The Hidden Diurnal Cycles of Atmospheric Methane at the Top of Mt. Fuji

Chang-Feng Ou-Yang¹, Shungo Kato², Kojiro Shimada³, Hiroshi Okochi³, Ting-Hung Yu⁴, Neng-Huei Lin¹

1. National Central University, Taiwan, 2. Tokyo Metropolitan University, Japan,

3. Waseda University, Japan, 4. Academia Sinica, Taiwan

1. Introduction

Methane (CH₄) is the second most abundant anthropogenic greenhouse gas next to CO₂, accounting for approximately 16.5% of the global radiative forcing as reported by NOAA/GMD in 2018. According to the AR5 published by IPCC, a CH₄ has a 28 times greater global warming potential than a CO₂ over a 100-year period (GWP₁₀₀)¹. This study presents the temporal variation of atmospheric CH₄ measured at the Mt. Fuji Research Station (FRS, 35.37°N, 138.73°E, 3776 m a.m.s.l.) in the summer of 2019. The observation period of the campaign was July 12 to August 20, 2019.

2. Methods

Ambient CH₄ was measured continuously using a cavity ringdown spectrometer (G1301, Picarro, USA). The instantaneous data points were taken at a frequency of approximately 2 s and further calculated into hourly averages. A series of NOAA/GMD tertiary standards ranging from 1599 to 2024 ppb using the NOAA04 scale was served for the calibration of CH₄ prior to the campaign. Meteorological data such as wind speed (WS) are provided by the FRS.

Three-day (72 h) backward trajectories at a frequency of 1 synoptic time per day (15:00 UTC) are computed using the NOAA/ARL HYSPLIT4 model. Four groups are identified accordingly as China, Japan, Pacific, and Korea (sort in chronological order).

Table 1 Statics of CH4 and WS for individual trajectory			
groups			
	Number of Days	CH ₄ (ppb)	WS (m/s)
China	3	1850.2±46.0	4.77±2.35
Japan	16	1811.4±30.3	4.03±4.11
Pacific	18	1766.4±21.7	1.55±0.21
Korea	3	1812.6±3.0	3.35±3.70
All	39	1791.5±36.0	3.34±3.21

3. Results and Discussion

The observational results are illustrated in Fig. 1. Mean concentration of CH_4 during the campaign is 1791.5±36.0 ppb, with a maximum and a minimum value of 1903.3 ppb and 1733.5

ppb, respectively. The mean values of CH₄ and WS for each trajectory group are calculated as shown in Table 1. Group China has the highest level of CH₄ (1850.2 \pm 46.0 ppb) and WS (4.77 \pm 2.35 m/s) on average, whereas group Pacific has the lowest level of CH₄ (1766.4 \pm 21.7 ppb) and WS (1.55 \pm 0.21 m/s).

As suggested in the literature²⁾, mountain-valley breezes are suppressed at Mt. Fuji due to the minimal radiation from the small surface area of the isolated mountaintop. However, a veiled diurnal cycle of CH₄ was found during a clam period (July 29 – August 8) of the campaign with lower wind speed. Reduced CH₄ in association with elevated H₂O was observed around noontime, which was likely driven by uplifting winds. The mean diurnal variation of CH₄ during the clam period is thus treated as a model for calculating the similarity for each day except the first (July 12) and the last (August 20) one. The similarity is evaluated based on Minkowski distance metric (D_{Mink}) as given as follows³:

$$D_{Mink} = \left(\sum_{t=1}^{N} \left| f_t^p - f_t^q \right|^r \right)^{\frac{1}{r}}$$

where f_t^p and f_t^q are the two individual time series at time tand N is the number of samples in the time series. A Chebyshev distance is defined ($r = \infty$), which is more sensitive to outlier values due to the non-linear character of the dataset. Regardless of the discrepancies between different originations of air masses, the similarity increases against daily mean wind speed with a regression coefficient (R^2) of 0.5 as illustrated in Fig. 2, meaning that the diurnal cycle of CH₄ could be more distinct when the wind speed is low.

4. Conclusion

The results of continuous measurement of atmospheric CH₄ conducted at the FRS during July 12 - August 20, 2019, was presented. A minor diurnal feature of CH₄ hidden in the time series was observed during the calm period of low wind speed, which has been analyzed by the similarity test in this study.

References

- IPCC (2013). Climate Change 2013: The Physical Science Basis, *Cambridge University Press*, Cambridge and New York.
- 2) Igarashi, Y., Sawa, Y., Yoshioka, K., Takahashi, H., Matsueda,

H., Dokiya, Y. (2006). Seasonal variations in SO₂ plume transport over Japan: Observations at the summit of Mt. Fuji from winter to summer. *Atmos. Environ.*, **40**, 7018-7033.

 Jain, A.K., Murty, M.N., Flynn, P.J. (1999). Data clustering: A review. ACM Comput. Surv., 31, 264-323.

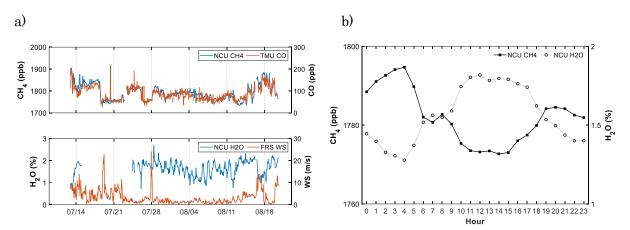


Fig. 1 a) Results of the continuous measurements during the 2019 campaign. b) Mean diurnal cycles of CH_4 and H_2O during the calm period July 29 – August 8.

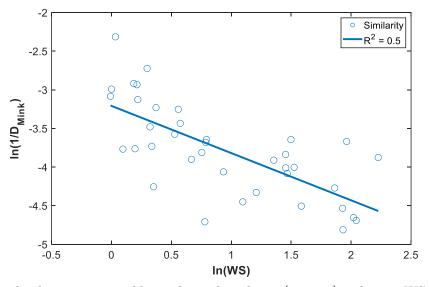


Fig. 2 Relationship between natural logarithms of similarity $(1/D_{Mink})$ and mean WS (m/s) for each day during the 2019 campaign